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The traditional handover decision methods depend on the handover threshold and measurement reports, which cannot efficiently
resolve the frequent handover issue and ping-pong effect in 5G (5 generation) ultradense networks. To reduce the unnecessary
handover and improve the QoS (quality of service), combine with the analysis of dwell time, we propose a state aware-based
prioritized experience replay (SA-PER) handover decision method. First, the cell dwell time is computed by the geometrical
analysis of real-time locations of mobile users in cellular networks. The constructed state aware sequence including SINR, load
coefficient, and dwell time is normalized by max-min normalization method. Then, the handover decision problem in 5G
ultradense networks is formalized as a discrete Markov decision process (MDP). The random sampling and small batch
sampling affect the performance of deep reinforcement learning methods. We adopt the prioritized experience replay (PER)
method to resolve the learning efficiency problems. The state space, action space, and reward functions are designed. The
normalized state aware decision matrix inputs the DDQN (double deep Q-network) method. The competitive and
collaborative relationships between vertical handover and horizontal handover in 5G ultradense networks are mainly discussed.
And the high average network throughput and long average cell dwell time make sure of the communication quality for
mobile users.

1. Introduction

The Internet of Things (IoT) and related technologies con-
sist of the important parts of the new generation information
technologies. The typical application scenarios of IoT
include Internet of vehicles, intelligent transportation, smart
factory, and smart home. The rapid development of commu-
nication, computation, and networking technologies has
made more [0oT devices connected. In the IoT, besides of
the typical fixed equipment (e.g., sensors and cameras), it
also includes huge amount of mobile user devices (e.g., cell
phone, cars, and UAV). There is also high demand for
mobile traffic and many time-sensitive typical applications
(e.g., automatic drive and telemedicine). The high speed,

low delay, and ubiquitous network characters of 5G net-
works support the Internet of everything, which is the criti-
cal guarantee for the high quality of communication services
and big data business in IoT application scenarios.

The 5G low band, midband, and LTE (Long-Term Evo-
lution) small cell techniques cannot meet the requirements
of massive devices access, high data rate, and huge amount
of mobile traffic in the next generation wireless networks
[1]. Therefore, we adopt high frequency section and the
ultradense deployment technique of 5G networks in our
research. In ultradense networks (UDN), the 5G critical
techniques consist of the millimeter wave technology [2].
By the ultradense deployment of small cells, the network
throughput and number of access users in two-layer cellular
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network architecture are improved [3-5]. And the QoS
(quality of service) requirements of mobile users are also sat-
isfied. However, the small coverage and network access lim-
itations of small cells bring about the frequent handover and
ping-pong effect which directly influence the quality and
continuity of communication services in 5G ultradense net-
works [6-8]. The traditional handover decision methods
depend on the handover threshold and measurement report,
which cannot efficiently resolve the frequent handover and
ping-pong effect.

To reduce the unnecessary handover and improve the
QoS, from the point of state aware method, combine with
the analysis of dwell time, the SA-PER handover decision
method is proposed. The handover management process in
wireless networks includes three steps: information collec-
tion, handover decision, and handover execution [9]. Most
research works focus on the improvements of handover
decision methods [10]. In the handover decision process,
the optimal candidate cellular is determined by the multiple
handover decision criteria and efficient handover decision
strategies [11]. And the handover rate, ping-pong effect,
radio link failure rate, throughput, and so on are selected
as the evaluation criteria. In this paper, the dwell time and
prioritized experience replay are selected as the new hand-
over criteria and handover strategy, respectively.

As Figure 1 shows, the 5G ultradense networks consist of
two-layer cellular architecture, included macro base station
(MBS) and small base station (SBS) [9]. The communication
services and data transmission of mobile users are realized with
the connections of macro cell or small cell. Because of the ultra-
dense deployment of small cells, the overlapped coverage of
macro cell and small cell is obvious. The small coverage and
access users’ limitation of small cell lead to the frequent hand-
over and ping-pong effect [10]. In our study, the complex hand-
over decision problem includes vertical handover (MBS-SBS)
and horizontal handover (MBS-MBS and SBS-SBS). How do
ordinary mobile users choose between horizontal handover
and vertical handover? How do we improve the performance
and efficiency of deep reinforcement learning-based handover
decision methods? The traditional weighted multiple handover
decision method is easily affected by the training process of
weighted coefficients, which unable to maintain stable perfor-
mance. The handover threshold and priori knowledge cannot
solve the ping-pong effect completely. Therefore, the cell dwell
time is selected as the handover decision criteria and prefer to
choose the cell which provides the long connection time not
the cell which provides the optimal network services. We should
be aware that if we select the cell obtained the optimal network
service, the frequent changes of optimal cell lead to the frequent
handover and degrade the QoS of mobile users [3]. To deal with
the overestimates of DQN-based handover decision method,
the DDQN is selected as the base method. To improve the
learning efficiency, convergence rate, and handover perfor-
mance, the prioritized experience replay mechanism is added
into DDQN. Combining with the analysis of cell dwell time
and PER method, a state aware-based prioritized experience
replay handover decision method is proposed to deal with the
frequent handover and communication interrupt problems in
5G ultradense networks.

Wireless Communications and Mobile Computing

FiGure 1: The scenario of horizontal handover and vertical
handover for mobile users in 5G ultradense networks. The two-
layer cellular architecture in 5G networks consists of MBS and SBS.

Our proposed method has good performance of hand-
over and meets the demands of mobile communication ser-
vice. In this research, our contributions are summarized as
follows:

(1) The handover threshold and periodic measurement
report cannot efficiently solve the frequent handover
and ping-pong effect. And the ultradense deploy-
ment exacerbated the handover problems in 5G
UDN. Aiming at the above handover problems in
5G UDN, we propose the SA-PER handover decision
method to deal with the frequent handover and com-
munication interrupt problems and reduce the ping-
pong effect

(2) The dwell time of mobile users in cellular networks is
analysed and calculated in detail. The proposed state
aware method includes state aware sequence, max-
min normalization, and normalized state decision
matrix, which supports the preprocessing of data
and assists the handover decision

(3) The handover decision problems of MBS-MBS,
MBS-SBS, and SBS-SBS are carefully researched.
Moreover, the competitive and collaborative rela-
tionships between vertical handover and horizontal
handover in 5G UDN are concerned and analysed.
Our analysis and discussion help mobile user better
balance the choice between vertical handover and
horizontal handover

The rest of this paper is organized as follows. The main
research works of handover decision and existing challenges
are introduced in Section 2. The system model is described
in Section 3. The SA-PER handover decision method is pro-
posed in Section 4. Simulation setups and experimental
results are provided in Section 5. Finally, Section 6 concludes
this paper. We summarize the definitions of the acronyms in
this paper in Table 1.

2. Related Work

5G networks support the Internet of everything, which pro-
vides the ubiquitous communication services for the fixed
IoT devices and mobile user devices. The mobility
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TaBLE 1: List of acronyms.

Symbol Description

5G 5 generation

AHP Analytic hierarchy process
A3C Asynchronous advantage actor-critic
DDQN Double deep Q-network
DNN Deep neural networks

DQN Deep Q-network

DRL Deep reinforcement learning

ES Evolution strategy

GRA Grey relational analysis
HetNets Heterogeneous networks

HOF Handover failure rate

HOR Handover rate

IoT Internet of Things

KPIs Key performance indicators
LTE Long-Term Evolution

MBS Macro base station

MDP Markov decision process

PER Prioritized experience replay
QoS Quality of service

RL Reinforcement learning

SAW Simple additive weighting

SBS Small base station

SDN Software-defined network
SA-PER State ware-based prioritized experience replay
TOPSIS Technique for Order Preference by Similarity to Ideal Solution
UDN Ultradense networks

management of the connected mobile devices is one critical
challenge for the continuous communications and high
quality of QoS. Therefore, many researchers focus on the
handover problem of mobile devices. In high mobility sce-
nario of IoT applications, such as UAV, the continuous
communication connection and handover management are
vital and nonignorable [12]. Sharma et al. [12] proposed a
media independent handover-based fast handover security
protocol in a heterogeneous IoT networks. The CoAP proto-
col is widely used in IoT networks. Chun and Park [13] pro-
posed a CoAP-based mobility management protocol to
realize the mobility management in IoT by the location
management function. An SDN-based method realizes the
mobility management in urban IoT heterogeneous networks
[14]. Machine learning [15, 16] and reinforcement learning
[17] have been widely applied to the research of handover
management. As one new artificial intelligence method,
DRL [18] is used in communications and networking to deal
with many decision problems, e.g., handover decision. The
high performance, online learning, and decision ability of
DRL attracted much attention from the academia and
industry.

The traditional handover decision methods in cellular
networks include multi-attribute-based handover decision
method [19], decision function-based handover decision

method [15, 19], and context-aware-based handover deci-
sion method [20]. Bastidas-Puga et al. [19] proposed a pre-
dicted SINR-based handover decision method to deal with
frequent handover and ping-pong effect. Singh and Singh
[15] adopted the multiattribute decision method to obtain
the weights of decision factors. By using the simple additive
weighting (SAW), TOPSIS (Technique for Order Preference
by Similarity to Ideal Solution), and grey relational analysis
(GRA) methods, the candidate cells are decided. Hu et al.
[20] proposed a velocity aware-based handover prediction
method. The handover decision problem is formalized as
the formal state-based shortest path problem in time expan-
sion diagram. In [21], Goyal and Kaushal combined with the
analytic hierarchy process method (AHP), TOPSIS, and
reinforcement learning to optimize the selection of candi-
date cell. In addition, many researches adopt state aware in
handover decision process, including context-aware [22,
23], mobility aware [6, 24], velocity aware [4, 20], and load
aware [25]. The state aware method provides necessary data
supports and decision basis for handover decision. In this
paper, we adopt state aware method and cell dwell time to
solve the performance fluctuation problem of traditional
weighted multiple attribute handover decision methods.
There are many research works focus on the frequent hand-
over, ping-pong effect, and handover failure problems in 5G



ultradense networks. Sun et al. [6] combined with the cell dwell
time and movement state of users to match the candidate cells.
By using movement aware handover decision method, the rela-
tions between dwell time and well connected cellular are bal-
anced. In [26], by the assistance of unmanned aerial vehicles,
the authors analysed the handover rate and dwell time of users
in cellular networks. When the dwell time increases, the average
handover numbers of users decrease, and the quality and conti-
nuity of communication services become better. Aiming at the
frequent handover and increasing load of networks, Liu et al.
[7] proposed a Q-learning-based handover decision method.
The SDN (software-defined network) and 5G techniques were
combined, and the entropy-based SAW handover decision
method was proposed [8]. In recent researches, the base stations
in cellular networks are selected as the edge computing node.
Considering the migration of communication services, data ser-
vices, and computing services, the researchers proposed a joint
handover method and unloading decision method [27]. Huang
et al. [16] firstly transformed the handover decision problem
into the classification problem. Considering the changes of
SINR parameter, the deep neural network (DNN) method real-
ized the handover decision. Hasan et al. [28] classified the users
into high speed users and ping-pong users. An elimination
method of frequent handover was proposed. The energy cost
issues of periodic measurements in 5G ultradense networks
were also concerned [5].

The reinforcement learning-based handover decision
method has good decision ability and handover performance,
which is popular in handover decision researches in heteroge-
neous networks (HetNets) and UDN. Guidolin et al. [23] pro-
posed an MDP-based handover decision method. By
modelling the handover decision of mobile users, the optimal
context handover decision standards were obtained. In [29],
an MDP-based vertical handover method maximized the total
expected rewards of handover. The AHP method computed
the weight coeflicients for the power, mobility, and energy cost
decision factors. Yang et al. [30] and Sun et al. [31] adopted the
multiarmed bandit handover decision method to produce
handover decision strategies and reward. And the optimal can-
didate cell was determined. Tabrizi et al. [17] considered the
state of networks and user devices and adopted Q-learning
method to select candidate cells in handover decision process.
The Q-learning-based handover decision method is widely used
to solve the handover decision problems in terrestrial networks
and satellite networks. The Q-learning-based handover decision
method and relevant improved algorithms outperform the
existing multiple attribute-based, decision function-based, and
handover threshold-based methods. But, the Q-learning
method needs to search the Q table for the optimal action in
each iteration, which cost high searching time for the high
dimensional state space. The Q-learning method is not suitable
for the decision problem with high dimension state space. The
DQN method replaces the Q table with DNN to describe the
action value function, which is used to solve the decision prob-
lem with high dimension state space [32].

Google DeepMind team proposed the DRL method and
obtained the superior performance in Atari 2600 games,
which attracted more attentions from academia [33]. This
new artificial intelligence method was used in communica-
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tions and networking to deal with dynamic network access,
data rate control, wireless caching, data offloading, and
resource management [18]. In [34], the DQN-based hand-
over decision method is used to deal with the frequent hand-
over issue in UDN. The handover decision is formalized as a
discrete Markov decision process. In [35], Sun et al. selected
the evolution strategy (ES) to optimize the convergence
speed and accuracy of backhaul network. And the DQN
method was used in the vertical handover decision problem
in HetNets. Wang et al. [36] creatively adapted the duelling
network in reinforcement learning (RL). The proposed new
network architecture represents two separate estimators,
which express the state value function and the state-
dependent action advantage function, respectively. The main
benefit of this factoring is to generalize learning across
actions without imposing any change to the underlying RL
algorithm. To reduce the signalling overhead and solve the
frequent handover, in [37], a double DRL method is pro-
posed in 5G UDN, which reduces the handover numbers.
By the trajectory-aware-based optimization method, the
optimal candidate cell is determined with the trajectory of
UE and topology of network. The connection time of UE-
BS is increasing which reduces the handover overhead. Con-
sidering the handover decision problem in ultradense het-
erogeneous network, Song et al. [38] proposed a
distributed DRL decision method. This proposed approach
concerned the energy costs of transmission and handover
load and minimized the total energy costs. In [39], the
mobility patterns of users were classified, and the asynchro-
nous multiagent DRL method was used in the handover
decision process. In [40], the prior knowledge and super-
vised learning method are used to initialize the DNN, which
offsets the bad effects of random exploration method. The
frequent handover issue caused by deployment handover
policy is solved by asynchronous advantage actor-critic-
(A3C-) based handover method. In [41], the joint problem
of handover and power allocation is formalized as the
completely cooperated multiagent task, which is solved by
the proposed proximal policy optimization-based multia-
gent reinforcement learning method. The global information
is used in the training process of decentralized policy used in
UE. In [32], Wu et al. proposed a load balancing-based dou-
ble deep Q-network (LB-DDQN) method for handover deci-
sion. In the proposed load balancing strategy, a load
coefficient is defined to express the conditions of loading in
each base station. The supplementary load balancing evalua-
tion function evaluates the performance of this load balan-
cing strategy. The comparisons of different handover
methods for cellular networks are shown in Table 2.

3. System Model

3.1. Network Model. In our research, the 5G UDN have tow-
layer cellular architecture included M macro cells and N
small cells. The deployment of heterogeneous cellular is
shown as Figure 2. The communication services and data
transmission of mobile users are provided by the connected
macro cell or small cell. The state aware method periodically
collects the data of network state, cellular state, and user
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TaBLE 2: Comparisons of different handover methods according to their characteristics.

Ref. Problems and scenarios Method Contributions Simulations KPIs
(6] Coordinated multipoint ~ User-centric COMP  Characterize the movement trend through ~ Numerical HOR: Th
handover in 5G UDN handover schemes dwell time simulation ’
. . . . - o HON; HOF;
7] Handov.er triggering policy Clustering-based RL Multiple de.c1510r‘1 crlterla—ba.sed handover MATLAB; SD PPE; Th;
in 5G UDN triggering mechanism
latency
Handover failures and HO triggers Recursive least squares-based SINR ]
(12] ping-pong effect in HetNet mechanism prediction method SD HOF; PPE
[15] Handover decision issue in AHP—TOPSIS; Q- UE rank; the optimal triggering points of MATLAB; SD HOR; PPE
LTE-A learning HO
[17] Handover in HetNets Markov-based Context-aware handover policies Monte Qarlo Capacity
handover strategy simulations
(22] Handover in 5G DNN Reduce the handover problem to a SD RLF; PPE
classification problem
[23] Frequent handover in 5G F_rc?que:'nt handgver Dwell time estimation; user detection NS3; HON; Th
UDN mitigation algorithm
[27] Handover decision in Q-learning Q-learning-based handover decision SD Cost; utility
HetNets
Frequent handover in SDN-based UDN architecture; DQN- N .
[30] UDN DQN based handover decision Mininet; HOR; Th
. Training the parameters of main Q- ) e
[31] VHO in HetNets ES-DQN network with ES Python; SD  HOF; Th; delay
33] Frequent handover in 5G Double DRI Trajectory-aware HO optimization Wireless Insite HON: Th
approach software; SD
[34] Handover decision in Distributed DRL MDP formulation; distributed DRL SD HON; energy
HetNets cost
. Mobility pattern-based user clustering;
[36] Handover in UDN A3C A3C-based HO policy SD HOR
Handover and power . Proximal policy optimization; cooperative )
371 allocation in HetNets Multiagent DRL multiagent DRL SD HOR; Th
Load balancing and Load balancing strategy; load coefficient; ) )
[43] handover in 5G UDN LB-DDQN load balancing evaluation function Python; SD HOR; Th
This Handover decision in 5G State aware; analysis of dwell time; the ) RLF; HON;
paper UDN SA-PER relationships between VHO and HHO Python; SD PPE; Th

VHO: vertical handover; HHO: horizontal handover; HON: handover number; HOR: handover rate; Th: throughput; HOF: handover failure rate; RLF: radio

link failure; PPE: ping-pong rate; SD: simulated data.

state to support handover decision. The intelligent handover
decision method is deployed in base stations, which collects
the necessary data in real time and decides the optimal can-
didate cells.

3.2. Channel Model. The channel model of MBS and SBS in
5G UDN describes the characteristics of wireless channel
[7]. The path loss of wireless link connected cell i and user
j defined as follows:

{ 324+201g (f)+301g (d;) +x,  itismacrocell
PL; =

T 324+201g (f)+31.91g (d,) +x, itissmallcell

d;j = \/(x,. —x;)" + (y,- ‘J’j)z’

(1)

where the path loss parameter named PL,;, f is carrier fre-

ij

quency, and d;; is the straight line distance between cell i
and user j. The coordinates (x;,;) and (x;,y;) express the

real positon of cell i and user j, respectively. y is the interfer-
ence and noise modelled by Gaussian random and Rayleigh
random variables. The parameter SINR is defined as follows:

P
SINR = 10slog (P +SP > (2)
I N

where Py, P, and Py are the effective power, interference
signal power, and noise power, respectively. The network
throughput of the occupied subchannel Th is defined as fol-
lows:

p
Th=W xlog,( 1+ ), (3)
P, + Py

where W is bandwidth of subchannel.
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F1GURE 2: The deployment scenario of MBS and SBS in 5G UDN. The overlapped coverage of MBS and SBS is obvious. The coverage area of

MBS is bigger than SBS.

3.3. Movement Model of Users. Figure 3 shows that the sim-
ulated scenario of smart city has multiple crossing roads,
and many users move randomly. The MBS and SBS deploy
in the both sides of roads, which provide wireless network
access services, communication services, and data transmis-
sion with the covered users. In this city, there are N mobile
users which appear randomly in different initial points and
move at a constant speed along one road. The users’ speed
includes low speed, intermediate speed, and high speed
which express the walk, bicycle riding, and drive scenes,
respectively. Moreover, the users’ number also has several
values expressed the different user scenarios.

3.4. Problem Formulation and Algorithm Elements. In this
paper, the handover decision problem in 5G UDN is formal-
ized as a discrete Markov decision process, expressed with
<S, A, and R>. And the parameters S and A are the state
space and action space. The reward function is 7 : Sx A —
>R. In the time slot ¢, s, s, a,, and r, are the network state,
agent action, and immediate reward in handover decision
process, respectively. The optimal candidate cells provide
mobile users with better communication services. The
research object of handover decision in this paper maximizes

the long-term cumulative rewards. The discounted reward
G, in the interactions between agent and environment is
defined as follows:

Gt = Z ykRHkJrl’
k=0

(4)

where R, is the immediate reward in time slot . The param-
eter y is the discount coeflicient of future reward. The action
value function Q(s,, a,) in the optimal Bellman operator is
defined as follows:

(5)

Q*(spa,) =E|R; + y-rglaxQ* (Str1> A1) |>
t+1

where s,,, is the network state in time slot ¢ + 1. The maxi-
mum of Q(s,,;,a,,,) function is searched. The state space,
action space, and reward function are defined as below,
respectively.

3.4.1. State Space. In 5G UDN, the network state is obtained
by state aware method. The state aware sequence consists of
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time = 100

FiGurg 3: The handover scenario of mobile users in 5G UDN in 100 seconds. According to the SA-PER handover decision method, the

mobile users select the candidate cell to connect.

SINR, dwell time Dtime, and load coefficient Load,
expressed as s, = <SINR, Dtime, Load >. Each time slot ¢,
the state information of mobile users is updated in real time.
The load coefficient is computed by Equation (14), and the
load message is sharing by the public service interface X2
in base station. The dwell time Dtime is obtained by Equa-
tion (11) which is defined in Section 3.1.

3.4.2. Action Space. In network time slot ¢, the user selects a,
as the candidate cell to handover. The candidate cell index
set in UDN is expressed with A={0,1,2,---,42,43}. The
index 0 to 9 is macro cell, and others are small cell. Each
time slot t, mobile users make a handover decision. If the
handover is needed, the optimal candidate cell is
determined.

3.4.3. Reward Function. The value of reward function is the
immediate reward of action a,. The reward function con-
sisted of three decision factors is defined as follows:

R, = Zwk°ét,i,k’ (6)

where the parameter R, is the immediate rewards in time
slot t. The parameter wy, is the weight of network state fac-
tors which is produced by the AHP method, k = 3. The net-
work state factors are the decision factors included SINR,
Dtime, and Load. The parameter ét)i)k is the normalized value
of network state k in cell i in time slot ¢. The adopted nor-
malization operation is the max-min normalization which
is described in [29].

4. The State Aware-Based Prioritized
Experience Replay Handover
Decision Method

4.1. Analysis of Dwell Time in Cellular. According to the cov-
erage area of heterogeneous cells, coordinates, and speed of
mobile users, the dwell time in cell is computed [6]. Because
the dwell time Dtime of mobile user is also a decision factor.
The optimal candidate cell provided maximum dwell time is
determined. In SA-PER handover decision method, a small
amount of network performance is sacrificed. It is assumed
that the mobile users move along the x-axis or y-axis in
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FIGURE 4: The dwell time for mobile users is analysed in 5G UDN. In the rectangular coordinate system, using the coordinates of mobile
users and base station in cellular, the specific movement direction and dwell time are computed.
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F1GURE 5: The framework of the proposed SA-PER handover decision method. The state aware method assists the handover decision, and
the prioritized experience replay method improves the learning efficiency and accuracy.

the rectangular coordinate system as shown in Figure 4. The
coordinates and speed of mobile users are collected in real
time. Based on these collected state aware data, the dwell
time of users in cell is computed. When users moving in
the positive direction of the x-axis, the dis is

V1 =yl + \V R —(x,-x)% y 2y,

dis = ,

R =(x, =) =y, =0l 7 <»,

(7)

where the parameter R is the communication radius of cell.
The coordinates (x;, y,) and (x3, y,) are the locations of base
station of cell. The coordinates (x,,y,) and (x4, y,) are the
locations of mobile users. When users moving in the nega-

tive direction of the x-axis, the dis is

Rz—(xz—x1)2—|y1—y2|, Y12,
dis = .
Rz—(xz—x1)2+|y2—y1|, 1<),

When users moving in the positive direction of the y
-axis, the dis is

|x3—x4|+vR2—(y4—y3)2, X3 2%y
\/R2—0/4—y3)2—|x4—x3|, X3 <Xy

When users moving in the negative direction of the y

dis = 9)
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Input: Iteration number NUM_EPISODES, step number MAX_STEPS, node number node_num, measurement information SINR,
length of update step D.

Output: Handover decision matrix A.

1: Initialize action-value function Q, replay buffer B and handover decision matrix A. The initialized parameters of the main Q-
network and target Q-network are consistent. 6, =0,..

2: fori=1, NUM_EPISODESdo

3: forj=1, MAX_STEPSdo

4: fork=1, node_numdo

5: According to Eq. (6), the immediate reward r, is computed.

6: According to Eq. (11), the dwell time is computed. According to Eq. (14), the load coeflicient Load is obtained. By the state
aware method, the network state s, in time slot ¢ is constructed. According to Eq. (16, 17), the state decision matrix M, is normalized.
7: By the e-greedy method, the action a, corresponding to state s, is determined and the handover decision matrix A is
updated.

8: The next state s, is produced and the transition (s,, a,, 7, s,,,) is stored in buffer B.

9: In PER method, according to Eq. (18, 19), the priority and probability of sample are computed. According to Eq. (20), the

weight of importance sampling method is computed. The sampling data is the input of main-Q network, and the action-value func-
tion Q,,(spa,) is computed.

10: According to Eq. (22), the action a,, corresponding to the maximum value of Q,, is obtained and input the target Q-network
Q. And the action-value Q,(s,, ;> 4,,) is computed.

11: Adopt the stochastic gradient descent method, according to Eq. (24), the parameters 0, of main Q-network are updated.
12: end for

13: Every D steps, the parameters of target Q-network are updated by the parameters of main Q-network. 6, =0,.
14: end for
15:  end for

16: Return the handover decision matrix A.

ArcoriTHM 1: SA-PER handover decision algorithm.

TaBLE 3: Simulation parameters of the network.

Parameters Macro cell Small cell
Total number of cell 10 34
Cell radius 500 m 50 m
Carrier frequency 2GHz 28 GHz
System bandwidth 20 MHz 500 MHz
RB’s bandwidth 180kHz 1.75MHz
Number of RBs 100 275
Thermal noise -174dBm/Hz
Shadowing 7.8dB 8.2dB
Antenna gain 15dBi 5 dBi
Cell transmit power 46 dBm 35dBm
Path loss model 32.4+201g (f)+301g (d) + x 32.4+201g (f) +31.91g(d) + x
Number of users 50, 100, 200, 300
Speed of UE (km/h) 5, 25, 50, 70, 120
Duration of simulation 600 seconds
Sampling interval 0.1 second
-axis, the dis is The dwell time Dtime, ; is computed by:
) dis;
V R = (y, = y3) = %3 — 2], x32x, Drime; ;= v, (1)
dis = : (10) !

R = (yy =) + |2 — %3], x3<x,

where the parameter dis; is the movement distance of user in
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FiGURE 6: The average handover numbers of users with different
methods. And the number of users affects the handover
performance.

cell i. And v; is the speed of user j. The average dwell time of
mobile users Mtime is defined as follows:

N M+S 1y
-~ Dtime, .
Mtime= )’ 20 < IN,  (12)
prd H O_numj * BS_numj

where HO_num! f and BS_numj are the total handover num-

bers and total connected cell numbers of user j, respectively.
And M, S, and N are the total number of macro cells, small
cells, and users, respectively.

4.2. State Aware Decision Matrix. In the state aware decision
matrix, the state aware sequence is a vital input, which
includes SINR, Dtime, and Load. SINR is the signal to inter-
ference plus noise ratio, which expresses the signal quality of
BS. Dtime is the dwell time of UE in cellular, which
expresses the connection time of UE-BS. Load is the load
coeflicient, which expresses the load condition of BS. In
handover measurement procedure [42], when the neighbor
cell’s signal becomes stronger than serving cell’s signal, the
measurement is trigged. The serving cell sends the measure-
ment control message to UE. In the measurement period,
the UE measure the signal quality of cells in neighbor cell list
(NCL). The SINR expresses the signal quality of cells, which
is collected. Dtime is computed in Section 4.1, which needs
the real-time position and velocity of UE. The real-time
position and velocity of UE are the application layer infor-
mation and collected by data collection coordinated function
which is mentioned in 3GPP TR 23.700-91V17.0.0. And the
public interface X2 shares the load information of each base
station. By using state aware method, the state data of net-
work, cell, and user is collected. Therefore, the network state
aware sequence is defined as follows:

s; = <SINR, Dtime, Load >, (13)

where the parameter Dtime is obtained by Equation (11).

Wireless Communications and Mobile Computing

The parameter Load is the load coefficient of cell.

UEnum;,

Load;, = , (14)

Tnum;

where Tnum; is the total number of subchannel in cell i. The
parameter UEnum,, is the number of connected users in cell
i in time slot t. The state decision matrix is defined as fol-
lows:

SINR, Dtime,; Load,
SINR, Dtime, Load,

M= , (15)
SINR; Dtime; Load;

where the parameter L =M + S is the total number of cells.
The parameter M, contains the SINR, Dtime, and Load state
data of every cells. The max-min normalization operation of
state decision matrix is defined as follows:

Crij —Min (¢x)

: ,  ¢; € SINR or Dtime
! max (¢,) —min (c;y)
ok = max (¢,;) — ¢

Lkl “tik ¢ e Load

max (¢,;) — min (c;y)

(16)

The normalized state decision matrix is

SINR, Dtime, Load,

, | SINR, Dtime, Load,

M= : (17)
SINR, Dtime;, Load,;

4.3. The Prioritized Experience Replay Based on DDQN
Method. By the state aware method and normalization oper-
ation, the normalized state decision matrix is obtained which
assists the handover decision. Combining with state aware
method, the proposed SA-PER handover decision method
adopts rank-based prioritization and importance sampling,
which make sure of the learning efficiency and convergence
of algorithm. The rank-based prioritization method com-
putes the priority p, of sample x.

P ranli (x)’ (18)

where the function rank (x) produces the order of sample x
in experience buffer. The order of sample x is determined by
its own absolute value of TD error. The probability of sam-
ple x is P(x).

P(x)= L (19)
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F1GURE 9: The handover rate, radio link failure rate, and ping-pong rate of different handover decision methods with the ue_num = 100.

The P(x) is a ratio. For the stable distribution of sam-  buffer. The parameter 5= 0.4 is a hyperparameter obtained
pling data, the weight coeflicient of importance sampling is ~ from experiments. In the training process of handover deci-
defined as sion, the normalized state decision matrix is the input of the

Q-network, and the optimal value of the action-value func-

w, = (CoP(x)) %, (20)  tion is output.

where the parameter C is the total number of samples in Q(sp>a:50) = Q (s> ay)- (21)
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When the maximum value of Q,, is obtained, the corre-
sponding handover action a,, is determined. The update of
action-value function in DDQN method is defined as

a,, = arg maxQ,,(s,;»4a)
Qu(sp ;) = Qp(sp a;) +1 % (Rpyy +y2Qy (841> 4y) —
(22)

The loss function of DDQN method is the difference
value between the target value y and the estimated action-
value function Q,,(s;, a,, 8,). The loss function is defined as

if s, isend

y= Rt+1’
Rt+1 + Y.Qt(stﬂ’ am > 9;)’ others (23)

L(0,) = (y = Qu(sia,30,))".

In the training process of handover decision, the loss
function returns the gradient loss to update the parameters
of main Q-network at each iteration. With the updates of
parameters, the value of loss function decreases. And the
performance of handover becomes better. The loss function
of DDQN method is optimized by the stochastic gradient
descent method. The gradient of loss function is defined as

VGXL(ex) =wL. (0 )VG Qu(spa,36,). (24)

In Figure 5, the framework of the state aware-based pri-
oritized experience replay method is illustrated clearly. In
network environment, the necessary information and data
collected by UE periodically input the state aware method.
The obtained state decision matrix is normalized. Then,
the obtained current state aware sequence s={SINR,D
time, Load}, action a, reward r, and next state s’ are stored
in the replay buffer. The state aware method also sends the
normalized state s to the main Q-network for the optimal
action a which is determined and send to the network envi-
ronment. The replay buffer provides transition (s, a), next
state s', and reward r to the prioritized experience replay,
target Q-network, and loss function, respectively. The prior-
itized experience replay includes the rank-based prioritiza-

Qu(spay))-
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tion and importance sampling methods. The important
samples usually have the big absolute value of TD error.
These important samples came from the replay buffer are
input the main Q-network. Different from the traditional
DDQN method, the random sampling mechanism or mini-
batch sampling method is improved by prioritized experi-
ence replay method. The basic DDQN method still
includes the main Q-network and target Q-network which
are used to determine the optimal action a,, and evaluate
the Q value of a,,, respectively. Every D episodes, the net-
work coeflicients of target Q-network are updated by main
Q-network. The main Q-network sends the Q(s,a) to the
loss function and get the corresponding gradient loss. At
the same time, the target Q-network shares the Q(s',a,,)
with the loss function. By the state aware method and anal-
ysis of dwell time, the performance fluctuation of weighted
multiattribute decision method is improved. The adopted
prioritized experience replay method improves the perfor-
mance of handover, the learning efficiency, and convergence
speed.

5. Experimental Results and Discussions

5.1. Simulation Environment Setups. The targets of this
research are to solve the frequent handover and communica-
tion interrupt. A PC carries out the simulation experiments
with 3.2GHz quad-core i5-1570 and 16 GB of RAM. The
OS is win 10, 64 bits, and the simulation platform is Python
3. The simulated scenario of virtual city is shown as Figure 3.
The width and length of simulated area in city are 2.5 kilo-
metres and 2 kilometres. This scenario includes 7 roads,
and the buildings, hills, rivers, and so on are unmarked. It
contains 10 macro cells and 34 small cells. These base sta-
tions are deployed along the roads to cover as much area
as possible. Note that the overlapping coverage is also evi-
dent. The movement model of UE is described as Section
3.3. The starting point of mobile user is randomly selected
from 11 initial points. The speed of mobile user is randomly
selected from 5km/h, 25km/h, 50km/h, 70km/h, and
120km/h. The mobile user is moving at a constant speed
in straight lines. The number of mobile users is 50, 100,
200, and 300, respectively. The simulation environment of
wireless heterogeneous cellular networks is realized by
Python. In this simulation, the system bandwidth of macro
cell and small cell is set to 20 MHz and 500 MHz, respec-
tively. The wireless channels of macro cell and micro cell
are modelled reference the TR 38.901 V16.1.0. The standard
deviations of shadow fading are 7.8dB and 8.2 dB, respec-
tively. For the handover settings, TTT and A3 offset are set
as 450 ms and 3 dB. If the SINR is below -3dB for 500 ms,
then the radio link is considered to have failed. The commu-
nication radius of macro cell and small cell is 500 meters and
50 meters, respectively. And the upper limits of connected
users are 100 and 275, respectively. One user only occupies
up to one resource block, and the bandwidth of subchannel
in macro cell and small cell is 180kHz and 1.75MHz,
respectively [43].

The handover rate (HOR), radio link failure rate (RLF
rate), and ping-pong rate (PPR) are selected as evaluation
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where Ny, is the number of successive handover, Ny is
the number of RLF, N, is the number of ping-pong, and
Niyta is the number of handover requests. The value of
HOR, RR, and PPR is between [0, 1]. According to Reference
[7, 44], the parameters of 5G UDN are determined. To com-
pare the proposed method, several previous popular hand-
over decision methods are considered: Q-learning [29],
DQN [34], DDQN [45], ES-DQN [35], and DuelingNet
[36] handover decision methods.

Reference to [39, 41], the simulation parameters of the
network are show as Table 3

5.2. Analysis and Discussion of Experimental Results

5.2.1. Average Handover Numbers of UE. Figure 6 shows the
average handover numbers of different handover decision
methods while the numbers of users are 50, 100, 200, and

300, respectively. When the number of users increases, the
handover numbers increase. And the proposed SA-PER
handover decision method has the excellent performance,
and the performance of DuelingNet method is much closed.
When a number of users are 50, 100, 200, and 300, the aver-
age handover numbers of SA-PER are 6.82, 10.76, 13.12, and
13.36, respectively.

In the proposed SA-PER method, the state aware
method makes full use of the state aware data and provides
the decision basis for the handover decision. Moreover, the
PER method improves the sampling method, and the learn-
ing efliciency and accuracy of DRL algorithm are optimized.
In the DDQN method, the main Q-network trains the net-
work coefficients, and the target Q-network updates Q-
network. The learning performance of DDQN method is
better than the traditional DQN method. Based on DDQN,
the DuelingNet method updates the network structure and
improves the learning ability. According to the comparative
analysis, we found that the proposed SA-PER handover
decision method solved the frequent handover problem.
And the average handover numbers decreased obviously,
which meets the communication demands of mobile users.

Figure 7 shows the average handover numbers of SA-
PER method with different speeds and numbers of users.
When the number of user is fixed, the increase of user speed
leads to the decrease of handover numbers. This is because
that when the user speed is bigger, the number of sampling
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is smaller, and the number of handover request is smaller.
When the user speed is fixed, the increase of users’ number
leads to the increase of average handover number, because
the load coefficient is one handover decision factor. In the
process of users’ movement, the mobile users prefer to con-
nect the candidate cell which has a low load coefficient.

Figure 8 shows the vertical handover (MBS-SBS) and
horizontal handover (MBS-MBS and SBS-SBS) performance
of SA-PER method with different numbers of users. With
the increase of users’ number, the total handover numbers
are increased. Because the increase of users’ number affects
the load of cell directly, in the SA-PER method, the number
of vertical handover is smaller than horizontal handover.
This is because that in the ultradense deployment of small
cells, the overlapped coverage between macro cell and small
cell is obvious. In the handover decision process, the macro
cell is mostly selected as the candidate cell. This is because
that the dwell time is also one decision factor. When the
dwell time is longer, the handover number is smaller. The
total handover numbers of vertical handover change a little.
When the coverage of cellular network is poor, the mobile
user only connects MBS or SBS. The collaborative relation-
ship between horizontal handover and vertical handover is
dominated. When the coverage of cellular network is good,
the candidate cellular set is big. The competitive relationship
between horizontal handover and vertical handover is dom-
inated. When the speed of UE increases, the UE selects the
macro cell to handover, which has the long dwell time.
Our research analyses the relations between vertical hand-
over and horizontal handover, which provides good prepa-
rations for the real deployment and increases the
successive handover rate.

5.2.2. Handover Rate, Radio Link Failure Rate, and Ping-
Pong Rate. Figure 9 shows the average value of the handover
rate, radio link failure rate, and ping-pong rate of different
handover decision methods with the e_num = 100.

When the values of HOR, RR, and PPR are smaller, the
performance of handover decision method is better. Because
of the random motion of UE, the N, is different for the
different handover decision methods. The HOF, RR, and
PPR of the proposed method are 0.066, 0.133, and 0.009,
respectively. The SA-PER outperforms other selected
methods. By the analysis of dwell time and PER, the average
handover number is minimum. The evolution strategy of
ES-DQN method initializes the deep neural network and
produces some unnecessary handovers. The number of
ping-pong effect is less than the total number of handover,
which explains the smaller value of PPR than HOR. The
increase of handover requests leads to the increase of radio
link failure. Therefore, the RR of DQN, DDQN, and Due-
lingNet increase a little.

5.2.3. The Throughput of Networks. Figure 10 shows the
average throughput of network for different handover deci-
sion methods while the number of user is 100. In compari-
son, the proposed SA-PER handover decision method has
a higher throughput 0.5465 Mbps. The performance of net-
work throughput for Q-learning method is in the second
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place. Because the Q-learning method usually used in the
discrete problems not the continuity problems, the state
aware and PER method optimize the data collection and
batch sampling. Therefore, the proposed method meets the
demands of communication services for the mobile users.

5.2.4. Average Dwell Time of User. The average dwell time of
different handover decision methods with different numbers
of users is shown in Figure 11. When the number of users
increases, the average dwell time decreases. And the SA-
PER method has a longer dwell time than others. Because
the state aware and PER method improve the learning effi-
ciency and accuracy, according to Equation (12), when the
total dwell time is fixed, the decrease of handover number
and connected cell number leads to the increase of dwell
time. The proposed SA-PER method has the longest dwell
time which means the lower handover numbers. And this
proposed method meets the demand of communication con-
tinuity for mobile users.

5.2.5. The Convergence of SA-PER Method. Figure 12 shows
the convergence condition of SA-PER method when the
number of user is 100. The average handover numbers cor-
respond to each generation. In the proposed SA-PER
method, the coefficients of Q-network have the random ini-
tial parameters, which leads to a high handover number.
With the training process, the handover performance of
our method becomes stable, and the handover number
becomes small. When the number of generation is 100, the
convergence of our method is obvious, and the handover
number is 30.54. When the number of generation increases
to 1000, the minimum handover number is 8.88. The pro-
posed method has a good handover performance and
improves the efficiency of handover management.

6. Conclusions

In this research, the proposed SA-PER handover decision
method reduced the frequent handover and ping-pong effect
in 5G ultradense networks. The quality and continuity of
communication services are upgraded and improved. The
state aware method and the analysis of cell dwell time
reduced the frequent handover and ping-pong effect. The
prioritized experience replay method improved the learning
efficiency and convergence rate of DDQN-based handover
decision method. The analysis of competitive and collabora-
tive relationships between different handovers helps the net-
work operators balance the resource efficiency and QoS. In
addition, by means of the decision ability of DDQN method,
the online learning of handover decision is more adapted to
the dynamics of networks and mobility of users.
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